It is no secret that the amount of digital data being collected and stored has exploded over the past decade. With high speed networks, more portable devices, and the coming wave of "the Internet of Things (IoT)", it is unlikely to slow down anytime soon.
Fortunately, there are lots of cheap, high-capacity options for storing all that data. Hard drives, flash memory devices, and even optical and tape offer capacities unheard of in the past. There are numerous ways to bundle all these devices using hardware and software to create huge virtual containers.
Unfortunately, capacity increases and speed increases are not the same curve on the graph. It is simply easier and cheaper to double the capacity of any given device than it is to double its speed. The same is true for the newest flash devices like SSDs. A 1 TB flash drive is not twice as fast as a 500 GB flash drive.
This means it will take longer to read all the data from a device shipped this year than it did to read all the data from a device shipped last year and it will take even longer to read it all in on next year's devices. This makes it more important than ever to improve the way the actual data is stored and managed on those devices through software.
Compression techniques, data de-duping capabilities, and distributed storage solutions can make it easier to handle large amounts of data, but more needs to be done. An effective object manager is needed to handle huge numbers of objects using minimal resources.
To give you an example of the problem, let's consider the default file systems on Windows machines - NTFS. This file system stores a 4096 byte file record for every file in the volume. That might not seem like a lot of space until you get large numbers of files. If you have 10 million files, then you must read in and cache 40 GB worth of file metadata. If you have 100 million files, the amount is 400 GB. For a billion files, it is a whopping 4 TB. Bear in mind that this figure is only for the file record table. All the file names are stored separately in a directory structure.
When large data sets are used, it is very common for any given data operation to only affect a small portion of the overall data set. If you do daily or weekly backups, it is common for only 1% or less of the data to change between those backups. The same is true for synchronizing data sets between devices. Queries typically only need to examine a small portion of the data as well.
Current systems are very inefficient in determining the small subset of data that is needed for the operation; thus too much data must be read and processed. For example, take two separate storage devices that each have a copy of the same 100 TB data set and that they are synchronized once a day. The data on each device changes independently between synchronization operations, but it is rare for more than a few GB to change each day. Using current systems, it might take a few hours and several TB of metadata reads to determine the small amount of data that must be transferred in order to bring the two devices back into perfect synchronization.
What is needed is a system that can quickly read a small amount of metadata from the device and find all the needles in the haystack in record time. This is what the Didget Management System is designed to do. It can store 100 million Didgets in a single container and read in the entire metadata set in under 21 seconds from a cold boot. It only needs to read in and cache 6.4 GB of data to do that and a consumer grade SSD has all the speed it needs to accomplish that query time.
No comments:
Post a Comment